

 ARL-TR-7579 ● JAN 2016

 US Army Research Laboratory

Network Science Research Laboratory (NSRL)
Discrete Event Toolkit

by Theron Trout and Andrew J Toth

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7579 ● JAN 2016

 US Army Research Laboratory

Network Science Research Laboratory (NSRL)
Discrete Event Toolkit

by Theron Trout and Andrew J Toth
Computational and Information Sciences Directorate, ARL

Approved for public release; distribuiton unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2016
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

10/2014–09/2105
4. TITLE AND SUBTITLE

Network Science Research Laboratory (NSRL) Discrete Event Toolkit
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Theron Trout and Andrew J Toth
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-T
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7579

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Discrete event simulation (DES) enables the analysis of well-defined systems by evaluating the results of events acting upon
the system. DES usually skips over timespans where no events occur to enable faster-than-real-time simulation. While this is a
powerful and often needed capability, in the domain of real-time emulation, where the events need to be synchronized with
other emulated and/or real components, time skipping is not feasible. This report describes a toolkit created by US Army
Research Laboratory’s (ARL) Network Science Research Laboratory (NSRL) for building a DES for injecting discrete events
into real-time emulations in a controlled and reproducible manner. The resultant system, the NSRL Discrete Event Toolkit
(NDET), has enabled high reproducibility of network emulations experiments for NSRL.

15. SUBJECT TERMS

Experiment Control, Simulation

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Andrew J Toth
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-2746
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution unlimited.

iii

Contents

List of Figures iv

1. Overview 1

2. Architecture Overview 2

3. API Class Structure 3

3.1 Experiment_Driver 3

3.2 Discrete_Event_Base 5

3.3 Event_Logger_Base 6

4. Discrete Event Simulation Lifecycle 7

5. Performance and Thread-Safety Considerations 8

6. Planned Future Capabilities 8

7. Conclusion 9

8. References 10

List of Symbols, Abbreviations, and Acronyms 11

Distribution List 12

Approved for public release; distribution unlimited.

iv

List of Figures

Fig. 1 NSRL ...1

Fig. 2 High-level system architecture of NDET ..3

Fig. 3 A unified modeling language (UML) diagram of the
experiment_driver class ...4

Fig. 4 A UML diagram of the discrete_event_base class6

Fig. 5 A UML diagram of the event_logger_base class7

Approved for public release; distribution unlimited.

1

1. Overview

The US Army Research Laboratory’s (ARL) Network Science Research
Laboratory (NSRL) is composed of a suite of hardware and software that models
the operation of mobile networked device radio frequency (RF) links through
emulation (not merely simulation) (Fig. 1). NSRL enables experimental validation
or falsification of theoretical models, and characterization of protocols and
algorithms for mobile wireless networks. It is used for a range of experiments, from
assessing in-network aggregation of network information for detecting cyber
threats, to characterizing the impact of communications disruption on perceived
trust and quality of information metrics delivered to Soldiers in tactical mobile
environments. Unlike other experimentation facilities for research in wireless
networks, NSRL is focused on Army-unique requirements like hybrid networks and
extensive modeling of ground and urban effects on communications. NSRL
supports investigation of traditional wireless networking challenges as well as more
general network science research issues. NSRL's emulation environment is result
of collaborative efforts between ARL and the US Naval Research Laboratory
(NRL).

Fig. 1 NSRL

Approved for public release; distribution unlimited.

2

The primary emulation tools used by ARL are the Extendable Mobile Ad hoc
Network Emulator (EMANE)1 and the Common Open Research Emulator
(CORE).2 Researchers at NSRL developed the NSRL Discrete Event Toolkit
(NDET) to improve the process of network science experimentation by providing
fine control over timing of modeled events external to the experiment. Emulated
networks developed by NSRL can model connectivity to hardware and software
systems that are unaware that they are not operating on real networks. NDET is a
lightweight, C++ application programming interface (API) for developing real-time
discrete event simulation (DES) systems, which simulate inputs, outputs, or
services required by the experiment.

The software and systems running on the emulated networks execute in real time
unlike simulations, which typically execute faster than real time by jumping from
event to event skipping the time between events. One of the biggest advantages of
emulated environments is that the characteristics of the network and its behaviors
can be fully controlled and are repeatable. This is particularly interesting when
emulating wireless networks as reproducibility of experimental environments using
real radios is often difficult as temperature and humidity changes, differences in
seasonal foliage, and other factors can alter the performance of the wireless
networks.

In concert with this consistency of network characteristics is the need for
reproducibility of other experiment events. NDET has facilitated the development
of experiment control and orchestration tools to provide such capabilities.

2. Architecture Overview

Figure 2 depicts the high-level architecture of the NDET components. Central to
the operation of a simulation built using NDET is a dedicated controller that
manages the emulation system. The controller’s primary tasks are to determine
events to be performed, launch execution of those events, log results, and update
performance metrics. Events to be performed are stored in the discrete event
definition table (DEDT) and accessed by the controller. Events in the DEDT
essentially define the overall scenario to be executed. Each event is associated with
a user-defined event execution class (EEC). A sample execution class would be one
that executes UNIX commands. Such a class knows how to accept a valid command
string and pass it to the underlying operating system. An instance of the EEC is
passed to a worker thread in the worker thread pool for execution. The number of
worker threads is specified by the user application using the NDET API and is
bound only by the lightweight process limit of the system on which the emulated
experiment is executed.

Approved for public release; distribution unlimited.

3

Fig. 2 High-level system architecture of NDET

3. API Class Structure

The toolkit’s primary elements consist of 3 core classes, which define the totality
of the API. These core classes are the experiment_driver, discrete_event_base, and
event_logger_base. These are described in detail in the following sections.

3.1 Experiment_Driver

The experiment_driver implements the controller depicted in Fig. 2. Its structure is
depicted in Fig. 3.

Controller

Performance
metrics

Worker
Thread

Worker
Thread

Worker
Thread

Worker
Thread

Discrete
Event

Definition
Table

User-defined
Event

Execution
Classes

Logging
Infrastructure

Approved for public release; distribution unlimited.

4

Fig. 3 A unified modeling language (UML) diagram of the experiment_driver class

When the user instantiates the experiment_driver, the desired number of worker
threads is specified. Next, EEC instances are provided and stored in the DEDT.

To initiate the experiment, the start() method is invoked. The invocation of this
method marks the epoch time for the experiment. All discrete event times are

Controller

Discrete
Event

Definition
Table

Performance
metrics

Approved for public release; distribution unlimited.

5

specified relative to this time, which advances in real time in step with the system
microsecond clock.

Upon reaching the specified start times for each event in the DEDT, the events are
handed off to worker threads for execution. The driver tracks the time between the
requested event start time and the time the event is invoked. These 2 numbers
together provide a metric for measuring the accuracy of the NDET system in
executing discrete events at the requested time. Casual observations from past
usage have shown delays often to be in the single digit to tens of microseconds.
Heavier system loads can introduce considerable jitter, however, and care should
be taken when accuracy is most critical.

Performance metrics maintained by the controller include details on the delay time
(i.e., delta between scheduled and actual event time). Users may query the
controller for the minimum, maximum, mean, and variance of delay times for the
current simulation run.

Metrics on event processing time are also maintained. This measures the amount of
time spent running the execute() methods of EECs. Like the delay time, available
metrics include minimum, maximum, mean, and variance of event processing
times.

Finally, the controller maintains a count of the total number of events processed.

3.2 Discrete_Event_Base

The discrete_event_base is the base class for all user-defined events (Fig. 4). It
provides the interface contract leveraged by the controller and worker threads to
execute the events.

Approved for public release; distribution unlimited.

6

Fig. 4 A UML diagram of the discrete_event_base class

As long as no pointers, references, or handles are shared between
discrete_event_base-derived classes, there should be no thread safety requirements
placed on API users. If, however, this is not feasible, the developer will need to
make appropriate usage of semaphores, etc., to ensure thread safe implementation.
The execute() method can be thought of as the main() class of the discrete event.
The developer may leverage any C/C++ capabilities to implement the desired
behavior of the event. It is worth stating explicitly that the worker thread running
the discrete event instance will be dedicated to running the given event until the
execute() method finishes. Developers can exhaust the thread pool if their
implementations perform long-running operations. In such cases, it would be
advisable to fork or launch a new thread to perform these operations.

The execute() method will be called with 2 parameters. The first is the scheduled
time when the event was to fire. The second is the delta time between the scheduled
time and the time the execute() method was called. These data can be used to fine
tune calculations or take other steps to mitigate timing errors.

3.3 Event_Logger_Base

The event_logger_base class (Fig. 5) provides the hook through which users may
access the output of the NDET logging infrastructure. API users can provide an
instance of a derived class to the controller and then collect and/or present the event
log details to their users in their preferred format.

User-defined
Event

Execution
Classes

Approved for public release; distribution unlimited.

7

Fig. 5 A UML diagram of the event_logger_base class

Two default logger implementations are provided for convenience. These are
console_logger and syslog_logger. The former sends all log output to standard
out/standard error, as appropriate. The latter sends the log data to the syslog hander.
The syslog handler is part of the GNU C library that opens a connection to the
syslog daemon. When using the syslog handler, it is the responsibility of the API
user to initialize syslog with an appropriate call to openlog().

4. Discrete Event Simulation Lifecycle

There are 3 phases to the discrete event simulation lifecycle:

• setup

• execution

• post-run analysis

During the setup phase, instances of custom event objects are created and passed to
the controller.

Logging
Infrastructure

Approved for public release; distribution unlimited.

8

Once ready, the execution phase is initiated. The system launches the requested
number of threads and invokes each event per the experiment schedule defined in
the DEDT.

After the experiment finishes, the post-run analysis phase provides an opportunity
for the user application to evaluate the run statistics collected and handle any
custom experiment data collected during the run.

The system can then rerun the experiment as-is; modify and relaunch; create and
run a new experiment; or shut down.

5. Performance and Thread-Safety Considerations

NDET provides a multi-threaded architecture and microsecond-clock accuracy on
most Portable Operating System Interface (POSIX)-compliant systems. A
dedicated control thread tracks emulation time and dispatches discrete event
execution to a pool of worker threads as event invocation times occur.

The worker thread pool size is determined by the user when the controller is
initialized. Initialization of lightweight processes (aka threads) requires a non-
trivial amount of time; consequently, all worker threads are created and initialized
prior to initiating the emulation.

The API makes heavy use of conditional variables and mutex mechanisms to
provide efficiency and thread safety. The API cannot prevent users from creating
race conditions or violating mutual exclusion constraints in their own EEC classes.
If users do not share variables or system handles between their EEC classes, there
should no thread safety issues for them to manage.

6. Planned Future Capabilities

The NDET system is in its early stages; however, it has already demonstrated its
usefulness to the NSRL team controlling an experiment in trust.3 This section
discusses some features planned for future releases.

NDET currently executes in real time, because it was initially designed to support
emulation-based experimentation. NSRL researchers are exploring methods to
leverage network simulations for experimentation, which will necessitate such a
feature in NDET. Because NDET maintains a real-time clock on which event calls
are based, this feature will require a decoupling of event execution from the real-
time clock.

Approved for public release; distribution unlimited.

9

Another time-based feature is “manual stepping” of the experiment driver. This
feature would be most useful in debugging experiments and non-time-based
simulations.

Generic resource and store base classes could be constructed to simulate
constraining conditions. The generic resource class would provide a standard
representation of limited, discrete resources that constrain event flow. A common
real-world example would be queues such as traffic lanes or teller windows.
Similarly, the generic store would model a standard representation for consumable
resources that constrain event flow, such as gallons of fuel or spending power.
Stores are distinct from resources in that stores are not returned to an available state
after use (e.g., a gallon of fuel does not become available again after one is finished
using it).

Collaborations between the NSRL researchers and researchers from other
institutions often create a need for an experimentation “mash-up.” Future
experiments could benefit from synchronization of multiple distinct experiments,
which may be possible using NDET.

The initial version of NDET was developed using C++, which is a common
language used in experimentation; however, Python and Java are also prevalent in
network science experimentation, so NSRL researchers will explore development
of NDET bindings for both of those languages.

Lastly, while initial results indicate performance measurements with microsecond
accuracy, jitter can be reduced by dedicating 1 central processing unit (CPU)/core
to the controller thread and dispatching worker threads to other CPUs/cores.
Performance may also be improved by correcting execution delay using the
statistics collected during event execution to correct for consistent deltas between
scheduled time and actual invocation times. For instance, if discrete event launches
consistently take 5 µs, NDET could compensate by invoking events 5 µs early.

7. Conclusion

NDET has been proven to be a benefit to network science experimentation in
NSRL. Further use of this capability and sharing it with collaborators will increase
our understanding of its utility and limitations. NSRL researchers will continue to
develop NDET and will make it available for public use on the ARL public web
site.4

Approved for public release; distribution unlimited.

10

8. References

1. Extendable Mobile Ad-hoc Network Emulator (EMANE) [accessed 2015],
http://www.nrl.navy.mil/itd/ncs/products/emane.

2. Common Open Research Emulator (CORE) [accessed 2015],
http://www.nrl.navy.mil/itd/ncs/products/core.

3. Chan K, Cho JH, Chan K, Trout T, Wampler J, Toth A, Rivera B. trustd: Trust
Daemon Experimental Testbed for Network Emulation. MILCOM 2015.

4. NSRL public web site [accessed 2015], http://www.arl.army.mil/nsrl.

http://www.nrl.navy.mil/itd/ncs/products/emane
http://www.nrl.navy.mil/itd/ncs/products/core
http://www.arl.army.mil/nsrl

Approved for public release; distribution unlimited.

11

List of Symbols, Abbreviations, and Acronyms

API application programming interface

ARL US Army Research Laboratory

CORE Common Open Research Emulator

CPU central processing unit

DEDT discrete event definition

DES discrete event simulation

EEC event execution class

EMANE Extendable Mobile Ad hoc Network Emulator

NDET NSRL Discrete Event Toolkit

NRL US Naval Research Laboratory

NSRL Network Science Research Laboratory

POSIX Portable Operating System Interface

RF radio frequency

UML unified modeling language

Approved for public release; distribution unlimited.

12

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 US ARMY RESEARCH LAB
 (PDF) RDRL CIN
 A KOTT

 3 US ARMY RESEARCH LAB
 (PDF) RDRL CIN T
 S KREPPS
 A TOTH
 B RIVERA

	List of Figures
	1. Overview
	2. Architecture Overview
	3. API Class Structure
	3.1 Experiment_Driver
	3.2 Discrete_Event_Base
	3.3 Event_Logger_Base

	4. Discrete Event Simulation Lifecycle
	5. Performance and Thread-Safety Considerations
	6. Planned Future Capabilities
	7. Conclusion
	8. References
	List of Symbols, Abbreviations, and Acronyms

